(1/2)6t^2=24t

Simple and best practice solution for (1/2)6t^2=24t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)6t^2=24t equation:



(1/2)6t^2=24t
We move all terms to the left:
(1/2)6t^2-(24t)=0
Domain of the equation: 2)6t^2!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
(+1/2)6t^2-24t=0
We add all the numbers together, and all the variables
-24t+(+1/2)6t^2=0
We multiply all the terms by the denominator
-24t*2)6t^2+(+1=0
Wy multiply elements
-48t^2+1=0
a = -48; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-48)·1
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-48}=\frac{0-8\sqrt{3}}{-96} =-\frac{8\sqrt{3}}{-96} =-\frac{\sqrt{3}}{-12} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-48}=\frac{0+8\sqrt{3}}{-96} =\frac{8\sqrt{3}}{-96} =\frac{\sqrt{3}}{-12} $

See similar equations:

| 2x+x/2=110 | | (7x-3)^2=12 | | 32k=225 | | 2(4x+8)=-3(-x+2) | | -20x^2+(x^2-4)(x^2-16)=0 | | 15-b+b=15 | | 2x+56x=10 | | (x^2-4)(x^2-16)=20x^2 | | x+2.5=-7.5+2.8 | | x+5+x=64 | | 9x-9x+33=15x-9 | | 2x-8-6x-4x=-2-8 | | 3(t-1)=(-t-5) | | -5|x-7|+2=-13 | | 3b-7+5b+2=35 | | 3+4(p+2)=2p+3p+12 | | 7|3x|+2=16 | | 3(t-1)=-t-5) | | 5x-13+x-1=4 | | -18/7x+5/2=2x+99/14 | | 4x/5+7=6 | | 4x=2(x=5)-9 | | 3(5=2h)+9=-30 | | 2(x-4)=2-(x+5) | | 2=1/2(x-1)+1/2 | | 4(3x-8)-5=4(x-2)+19 | | 3/2(2m-10)=2/3m=10 | | 7b-7+2=35 | | 5y+3=72 | | 8x−5=12x+1 | | 13.1+29.3y=28.4y+13.397 | | 16x2−48x-24=0 |

Equations solver categories